Powered by

Trial-and-Error-Prinzip könnte Ursache für Unfruchtbarkeit bei Frauen sein

Bei der Bildung der Eizelle arbeitet der für die Trennung der Chromosomen verantwortliche intrazelluläre Mechanismus überrasched unzuverlässig, wenn es um das „Herausfischen“ der aufzuteilenden Chromosomen aus dem Zellinneren geht. Dies haben Wissenschaftler am EMBL in Heidelberg herausgefunden. Die in "Cell online" veröffentlichte Studie könnte erklären, warum eine fehlerhafte Anzahl von Chromosomen in der Eizelle die Hauptursache für Fehlgeburten, weibliche Unfruchtbarkeit oder schwerwiegende erblich bedingte Krankheiten, wie z.B. das Down-Syndrom, ist.

Die farbigen Linien (von violett bis gelb) zeichnen die Bewegungen der Kinetochore nach (grüne Punkte), während die Mikrotubuli sich zur Trennung der Chromosomen (blaugrün) bei ihnen einhaken. © EMBL / T.Kitajima

Ein wesentlicher Schritt bei der Bildung einer Eizelle ist die Trennung der Chromosomenpaare. Unglücklicherweise arbeitet die dafür zuständige zelluläre Maschinerie jedoch beim „Herausfischen" der aufzuteilenden Chromosomen aus dem Zellinneren bisweilen äußerst unpräzise. Dies jedenfalls haben Wissenschaftler am Europäischen Laboratorium für Molekularbiologie (EMBL) in Heidelberg in einer Studie herausgefunden, die online im Fachmagazin Cell veröffentlicht wurde. Das dabei unerwartet häufig auftretende Prinzip von Trial-and-Error könnte erklären, warum eine fehlerhafte Anzahl von Chromosomen in der Eizelle die häufigste Ursache für Fehlgeburten und schwerwiegende erblich bedingte Krankheiten ist. Dazu zählen u.a. Trisomien, wie z.B. das Down-Syndrom. Dieser Defekt ist damit auch eine wichtige Ursache weiblicher Unfruchtbarkeit.

In unseren Zellen befinden sich stets zwei Kopien eines jeden Chromosoms, wobei eine Kopie von der Mutter und eine vom Vater stammt. Eine Oozyte - d.h. eine Zelle, die zu einer Eizelle heranreift - muss sich im Laufe des Reifungsprozesses von der Hälfte ihrer Chromosomen trennen und behält von jedem Chromosom entweder die mütterliche oder die väterliche Kopie. Bei der Trennung spielen die faserartigen Mikrotubuli eine wichtige Rolle, die sich wie eine Angelschnur bei den Chromosomen einhaken und diese zu den jeweils gegenüberliegenden Polen der Zelle ziehen. Die Wissenschaftler am EMBL entdeckten nun, dass sich die Mikrotubuli beim Angeln jedoch weitaus ungeschickter anstellen als bisher angenommen. Oft muss ein irrtümlich geangeltes Chromosom sogar wieder freigesetzt werden.

Korrekturmechanismen ermöglichen mehrere Anläufe

"Wir konnten direkt beobachten, dass sie mehrere Versuche benötigten, bis sie richtig eingehakt waren" so Jan Ellenberg, der Leiter der Studie am EMBL. "Insgesamt wurden 90% aller Chromosomen zunächst falsch festgeheftet, so dass der intrazelluläre Korrekturmechanismus auf Hochtouren arbeitete."

Das Problem bei der Oozyte ist, dass sich zwei Angelschnüre - ausgehend jeweils von den gegenüberliegenden Seiten einer Zelle - sowohl an den von der Mutter als auch an den vom Vater stammenden Chromosomensatz desselben Chromosoms anheften müssen. Jeder dieser Chromosomen besitzt eine Proteinstruktur, die als Kinetochor bezeichnet wird. Sie haben eine ähnliche Funktion wie der Magnet am Fisch des bekannten Angelspiels, d.h. sie ermöglichen es den Mikrotubuli sich festzuheften. Den Wissenschaftlern am EMBL ist es nun als ersten gelungen, die Bewegungen aller Kinetochore in den Eizellen von Mäusen über einen Zeitraum von 8 Stunden hinweg während der ersten Zellteilung im Mikroskop zu verfolgen. Mauseizellen sind denen des Menschen sehr ähnlich und eignen sich daher sehr gut als Forschungsmodell.

"Erstmals konnten wir über eine längere Zeit besonders hochauflösende Bilder aufnehmen," erläutert Tomoya Kitajima, der die Forschungsexperimente durchführte. "Dies gelang mit Hilfe eines von uns speziell entwickelten Mikroskops, das die Chromosomen in der Zelle zunächst selbstständig lokalisiert, dann nur die betreffende Region beleuchtet und abbildet und so die Zelle nicht mehr schädigt als unbedingt nötig".

Sogar Schummeln erhöht die Erfolgsquote nur unwesentlich

Die Zeitraffer-Videos von Ellenberg und Kitajima zeigen außerdem deutlich, wie die Mikrotubuli beim Angeln „schummeln" - ähnlich wie Kinder beim Spiel, die ihre magnetische Angel dazu benutzen den Fisch an eine günstige Stelle zu ziehen, von wo aus er leichter zu erreichen ist. So interagieren auch die Mikrotubuli in den frühen Phasen der Zellteilung mit den Chromosomenarmen, noch bevor sie sich an den Kinetochoren festhaken, und manövrieren sie in eine spezielle Position, so dass sie sich wie ein Gürtel um das Zentrum der Mikrotubulispindel legen.

Allerdings reicht auch dieser am EMBL erstmals entdeckte Chromosomengürtel allein nicht aus, damit die Chromosomen sofort richtig herausgefischt werden. Die Wissenschaftler stellten vielmehr fest, dass die Anheftung an die Kinetochore bei dieser besonderen Form der Zellteilung, der Meiose, sehr viel fehleranfälliger ist als bei der Mitose, der einfacheren Zellteilung, mit der sich unsere Körperzellen teilen. Dies liegt vermutlich daran, dass der Vorläufer der Eizelle eine außergewöhnlich große Zelle ist und die Mikrotubuli bei der Meiose von ungefähr 80 verschiedenen Stellen innerhalb der Zelle ausgehen. Bei der Mitose hingegen finden sich lediglich die zwei Ausgangspunkte.

Zusammenfassend sagte Ellenberg: "Unsere Ergebnisse liefern eine schlüssige Erklärung für die enorme Fehlerquote bei der Bildung der Eizelle. Und sie bilden eine solide Grundlage für die weitere Erforschung der altersbedingten Unfruchtbarkeit bei Frauen, denn es ist mehr als wahrscheinlich, dass ein Bestandteil des zellulären Korrekturmechanismus dabei eine wichtige Rolle spielt".

Originalveröffentlichung:
Kitajima, T.S., Ohsugi, M. & Ellenberg, J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes, DOI 10.1016/j.cell.2011.07.031

Seiten-Adresse: https://www.gesundheitsindustrie-bw.de/de/fachbeitrag/pm/trial-and-error-prinzip-koennte-ursache-fuer-unfruchtbarkeit-bei-frauen-sein/