

ABE production from Lignocellulosic materials by *Clostridia*

Introduction

Due to extensive oil consumption and its increasing price trend, the use of biofuels as a partial replacement for fossil fuels has gained great attention worldwide. Butanol is a four-carbon primary alcohol used as a chemical feedstock and as a renewable fuel. Butanol is preferable to ethanol, because it is less hygroscopic, less corrosive, less volatile, and has a higher energy density. The biological production of acetone/butanol/ethanol (ABE) has prompted a great deal of interest in the light of diminishing oil resources worldwide and unpredictable fluctuations in petroleum.

Research

Breeding of highly tolerant mutation

Clostridium beijerinckii 1B4 (CCTCC NO:M2010310)

Highly inhibitor tolerance

Substrate	Inhibitor removal	Cultus	ABL (8:T=1)	Vieldr (gg ')	Productivity (g-1-h-1)
Corn fiber	XAD-4 resin	C. beijerinekii BA101	9.3	0.39	0.1
Corn fiber	None	C beijerinckii BA101	1.7	X	x
Corn fiber	Acrive carbon	C. beljerinekil M4	10.1	0.36	0.14
Corn fiber	None	⊂ heijerinekii 1B4	9.5	0.34	0.13

Clostridium acetobutylicum BD518 (CCTCC NO:M2010308)

High butanol-tolerance

BD518 challenged with 17 g/L butanol.

ABE fermentation integrated with pervaporation

PDMS-Ceramic composite membrane produced by the State Key Laboratory of Materials-oriented Chemical Engineering, NJUT

Separation factor of butanol: 5-27
Solvent in permeate: 100 g/L
Direct integrated with fermentation
process more than 200h at 37°C
High flux: 600 g/(m²-h)

ABE fermentation by immobilized cells of *Clostridia* integrated with pervaporation

Fouled membrane surface of ABE fermentation by immobilized cell

Fermentation process	ABE productivity (g/L/h)	ABE yield (g/g)	Glucose utilization (g/L/h)	Butanol in reactor (g/L)	ABE remove
Batch fermentation	0.257	0.349	0.8	18.51	1
Fed-batch fermentation integrated with pervaporation with pH control	0.394	0.298	1.35	3.32	90.0%
Fed-batch fermentation integrated with pervaporation with pH control by immobilized cells	0.595	0.311	1.91	3.70	92.6%

ABE productivity and glucose utilization rate were improved by 131%, 139% respectively. Butanol concentration in the reactor was below 4g/L.

Prospect

In situ separation technology

Fermentation control

Reduce butanol
Production cost to
\$ 1000/t

Release the product inhibition

Agriculture waste

Analysis of butanol production from agricultural wastes in Jiangsu Province

