Jump to content
Powered by

CorTec GmbH – a bridge between ideas and action

Brain machine interfaces that are able to read a paralysed patient’s desired movement from his or her brain and convert it into actual movement might be available in a few years’ time, if everything goes to plan. After many years of intensive research, CorTec GmbH, a spin-off company of the University of Freiburg, now has a technology platform that is able to measure and interpret a person’s brain activity and drive muscles or artificial prostheses. Why and how was the company founded? How far has the technology come since the initial idea was first mooted?

A person is involved in an accident and suffers extensive injuries; the neurons linking the spinal marrow and the extremities are completely severed. Although the patient can now imagine how his hand grasps a cup of tea, his body no longer does what he wants. Can applied neuroscience help? Researchers from the Brain Machine Interface Initiative (BMII) at the University of Freiburg firmly believe that they can. They have spent more than ten years investigating how to drive and control muscles or prostheses using brain activity. They hope that one day they will be able to bridge connections using sensors, electrodes and computer chips. They hope to develop a platform that directly connects the brain with the machine. Is this the kind of science fiction that we know from William Gibson’s cyber punk novels?

Completely different structures are needed

The idea on which BRAINCON is based. © CorTec GmbH

“We are currently working on the BRAINCON technology platform and hope to be able to use it for such purposes in a few years’ time,” said Dr. Jörn Rickert, the managing director of CorTec GmbH, which was spun out of the University of Freiburg last year. “Some individual components will soon be granted marketing authorisation.” The researchers are already able to measure and record brain activity using electrodes and deduce from this the type of movement a patient wants to make. Using specific software and hardware, information from the brain will be translated into commands for the control of a prosthesis, or of leg or arm muscles. In experiments, volunteers have been able to move a cursor on a computer screen just through thought. The researchers believe that a paralysed patient might be able to learn to write and communicate again using the BRAINCON technology.

So science fiction becomes reality. Nevertheless, there is still a long way to go before BRAINCON can be commercialised. The technology needs to be tested in preclinical studies and then in clinical studies. So, why has CorTec already been established? “Turning an idea that resulted from basic research into a leading product requires structures quite different from those in a university research group,” said Rickert. Rickert, who did his doctorate in the Department of Neurobiology and Biophysics under the supervision of Prof. Dr. Ad Aertsen at the University of Freiburg on the representation of movement direction in the motor cortex. Rickert has been working on technology transfer issues for around five years. Supported by the university’s Technology Transfer Office, Rickert and his colleagues Carsten Mehring and Tonio Ball filed their first patent application in 2006. In 2005, the three had already received a grant for the development of a brain machine interface under the EXIST-Seed programme run by the German Ministry of Education and Research (BMBF).

Sophisticated quality management and final negotiations

Supported by EXIST-Seed funds and from 2007 onwards with additional funds from the BMBF’s GO-Bio programme, the team was able to further develop the technology and prepare to set up a company. While his colleagues worked with medical doctors, physicists, mathematicians, computer scientists, biologists and material researchers at the University of Freiburg and the Freiburg University Medical Centre on the scientific aspects of the project, Rickert focused on setting up the team, creating structures enabling interdisciplinary communication between the project partners, and preparing a project, a business plan and patent management. “Creating the structure to set up a company requires investors to provide financial injections,” said Rickert. “It is also necessary to put in place a sophisticated quality management structure, comply with standards and carefully compile all the required documents.”

CorTec GmbH team: back row from left to right: Christian Henle, Dr. Martin Schüttler, Sophia Schröder, Jörg Fischer. Front row from left to right: Prof. Thomas Stieglitz, Wolfgang Meier, Christina Schwartz, Dr. Jörn Rickert, Markus Raab. © CorTec GmbH

The company was officially founded in September 2010. The interdisciplinary team has since introduced a top-notch quality management structure in the laboratory of Prof. Dr. Thomas Stieglitz from the Department of Biomedical Microtechnology at the University of Freiburg’s Institute of Microsystems Technology. The business plan prepared by Rickert and his colleagues was shortlisted in the final round of the Science4Life funding initiative competition for the best business concept. In early 2011, the future entrepreneurs received a financial injection from the BMBF to establish their company. At present, the CorTec team is in contact with investors and hopes to commence preclinical studies with BRAINCON in a few months’ time. It is planned to commence the clinical phase in about two to three years. Some components of the technology platform will most likely be placed on the market sometime in 2011.

Being among the first

Technology transfer starts way before a prototype, not to mention a product, exists. It is a process that needs to be well prepared and can only be managed with financial and ideological support. Rickert and his colleagues are very grateful for the support they received from the Technology Transfer Office at the University of Freiburg and through the many non-university funding programmes. In the coming months, seven scientists will move from the university to the company, and two open positions still need to be filled.

The company will soon relocate to its own rooms at the University of Freiburg. The close contact with research partners is also expected to bear fruit in the future. “We have gained a technology lead in the last few years and we hope to be able to keep this despite the work being done by our competitors, in the USA and elsewhere,” said Rickert. CorTec GmbH is aiming to be among the first companies to offer permanent neurotechnological systems that will enable paralysed people to turn ideas into actions.

Further information:

Dr. Jörn Rickert
Institute of Biology I
University of Freiburg
Hauptstr. 1
79104 Freiburg
Tel.: +49 (0) 761/ 203 - 25 43
Fax: +49 (0) 761/ 203 - 29 21
E-mail: rickert(at)biologie.uni-freiburg.de

Website address: https://www.gesundheitsindustrie-bw.de/en/article/news/cortec-gmbh-a-bridge-between-ideas-and-action