zum Inhalt springen
Powered by

Defekter Signalweg führt zu Gefäßwucherungen im Gehirn

Ein gestörter Signalweg in Endothelzellen, die das Innere der Blutgefäße auskleiden, führt zu Kavernomen, oftmals gefährlichen Gefäßfehlbildungen im Gehirn. Dies veröffentlicht ein Forscherteam der Medizinischen Fakultät Mannheim der Universität Heidelberg und des Deutschen Krebsforschungszentrums.

Menschliche Blutgefäße im experimentellen Mausmodell: Ausschalten des CCM1-Gens führt zu dem typischen, unorganisierten Erscheinungsbild. © DKFZ

Die Untersuchungen klären die Ursache für eine der häufigsten Fehlbildungen des Menschen auf und weisen darüber hinaus darauf hin, dass Kavernome mit Medikamenten behandelt werden könnten, die das Gefäßwachstum hemmen.

Gutartige Gefäßfehlbildungen, sogenannte Kavernome, können in vielen Geweben des Körpers auftreten. Diese Fehlbildungen zeichnen sich durch stark erweiterte, instabile und unstrukturierte Blutgefäße aus. Medizinische Bedeutung haben vor allem Kavernome im Gehirn, die sich bei etwa einem von zweihundert Menschen entwickeln. Im Gehirn bleiben die Wucherungen oft lange Zeit unbemerkt und werden typischerweise als Zufallsbefunde bei Kernspinuntersuchungen entdeckt. Wenn sie wachsen, machen sie sich meist durch unspezifische Symptome wie Kopfschmerz oder Schwindel bemerkbar. Dabei steigt die Gefahr von Gehirnblutungen aus diesen Gefäßwucherungen, was zu Krampfanfällen, neurologischen Ausfällen bis hin zum Schlaganfall führen kann. Daher werden Kavernome, die Symptome verursachen, nach Möglichkeit chirurgisch aus dem Gehirn entfernt.

"Unsere aktuellen Ergebnisse zeigen, dass - ähnlich wie in Tumoren - überschüssiges und unkontrolliertes Gefäßwachstum zur Entstehung von Kavernomen führt", erklärt der Leiter der aktuellen Untersuchung, Dr. Andreas Fischer. Er ist Mitarbeiter der Abteilung "Vaskuläre Biologie und Tumormetastasierung", die gemeinsam von der Medizinischen Fakultät Mannheim der Universität Heidelberg und dem Deutschen Krebsforschungszentrum eingerichtet worden ist. Die Abteilung ist Ausdruck der engen Vernetzung der beiden Institutionen auf einem zentralen Forschungsgebiet der Onkologie - der Neubildung von Blut- und Lymphgefäßen bei der Entstehung und dem Wachstum von Tumoren und ihren Metastasen. Die hier konzentrierte Expertise auf dem Gebiet der Gefäßbiologie zeigt sich auch in dem Sonderforschungsbereich „Vascular Differentiation and Remodeling" (SFB/TR23), dessen Sprecher, Prof. Dr. Hellmut Augustin, Leiter der Abteilung ist. 

Bereits bekannt war, dass Kavernome im Gehirn entstehen, wenn in den Endothelzellen, die alle Blutgefäße auskleiden, das Gen CCM1 ausfällt. Warum dies jedoch zu den charakteristischen Missbildungen führt, war bisher nicht geklärt. Das Forscherteam identifizierte nun gemeinsam mit Kollegen aus Essen und Greifswald, welche zentralen Signalwege in Endothelzellen durch den Verlust des CCM1-Gens beeinträchtigt werden. Um die beim Menschen auftretende Erkrankung besonders gut simulieren zu können, transplantierten die Wissenschaftler menschliche Endothelzellen mit ausgeschaltetem CCM1-Gen in Mäuse. Die transplantierten Zellen wuchsen daraufhin zu den typischen Gefäßwucherungen aus. So konnten die Experimente im Mausmodell an menschlichen Blutgefäß-Fehlbildungen durchgeführt werden. Daher lassen sich die Ergebnisse gut auf die Situation bei der Erkrankung des Menschen übertragen, so dass z.B. auch Medikamententests durchgeführt werden konnten.

In einem ersten Ansatz prüften die Forscher das Krebsmedikament Sorafenib, das die Neubildung von Blutgefäßen hemmt. Bei den transplantierten Mäusen führte die Substanz zu einem massiven Rückgang der Gefäßwucherung. “Wir wollen nun prüfen, ob wir mit einem Medikament aus der Krebsmedizin Kavernome im Gehirn auch ohne Operation behandeln können“, erklärt Dr. Andreas Fischer die zukünftigen Ziele des Projekts.

Literaturhinweis:

Wüstehube J, Bartol A, Liebler SS, Brütsch R, Zhu Y, Felbor U, Sure U, Augustin HG, Fischer A: Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc. Natl. Acad. Sci. USA; early online edition, June 21, 2010. DOI: 10.1073/pnas.1000132107

Seiten-Adresse: https://www.gesundheitsindustrie-bw.de/fachbeitrag/pm/defekter-signalweg-fuehrt-zu-gefaesswucherungen-im-gehirn