Press release - 06/02/2023 Fewer side effects thanks to personalised medicine Patients have 30 percent fewer serious side effects when medication doses are tailored to their genetic profile. This is what an international research consortium has found out, including the Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology at the Bosch Health Campus. With an individual DNA medication pass, as used in the study, treatments can be made more effective and safer in the future.https://www.gesundheitsindustrie-bw.de/en/article/press-release/weniger-nebenwirkungen-dank-personalisierter-medizin
Press release - 26/08/2024 Synthetic Immunology: Approaching a Turning Point in the Treatment and Prevention of Disease Synthetic immunology is the topic of an article in the “Perspectives” section of the journal “Nature Nanotechnology”. Herein, Heidelberg researchers describe a so-called bottom-up approach that uses the toolbox of nanotechnology and synthetic biology to construct systems from molecular building blocks and specifically equip them with immune functions. https://www.gesundheitsindustrie-bw.de/en/article/press-release/synthetic-immunology-approaching-turning-point-treatment-and-prevention-disease
Press release - 19/09/2023 Better distinguish chronic inflammation and cancer of the pancreas Current diagnostic methods do not always reliably distinguish between chronic inflammation of the pancreas and pancreatic cancer. About one third of all diagnoses are inconclusive. Scientists from the German Cancer Research (DKFZ) and from Heidelberg University Hospital (UKHD) therefore searched for molecular markers that could specify this diagnosis.https://www.gesundheitsindustrie-bw.de/en/article/press-release/chronische-entzuendung-und-krebs-der-bauchspeicheldruese-praeziser-unterscheiden
Press release - 25/02/2025 Self-healing hearts How Zebrafish regenerate heart muscle cells Zebrafish can completely replace damaged heart muscle cells: The affected organ becomes fully functional again. Researchers at Ulm University have discovered that a specific cell-to-cell communication signal helps them to cope better with replication stress. This stress inhibits tissue regeneration in humans and mammals as they age. In Zebrafish a signalling protein ensures that the cells of the damaged organ continue to divide and thus multiply.https://www.gesundheitsindustrie-bw.de/en/article/press-release/self-healing-hearts-how-zebrafish-regenerate-heart-muscle-cells
Press release - 25/09/2024 How developmental signals can contribute to Genomic Mosaicism Certain developmental signals play a significant role in maintaining our genetic blueprints. They prevent alterations in the genome, known as mosaicism. The underlying biological mechanism helps the DNA to produce an identical copy of itself during cell division using the original genetic blueprint. However, it can also contribute to genomic mosaicism during nerve cell development.https://www.gesundheitsindustrie-bw.de/en/article/press-release/how-developmental-signals-can-contribute-genomic-mosaicism
Dossier - 01/04/2013 Retroviruses from infectious agent to therapeutic assistant Viruses are infectious particles that use the machinery and metabolism of a host cell to replicate. The family of retroviruses is particularly known for its most notorious representative i. e. the human immunodeficiency virus HIV. However retroviruses are not only of interest for researchers looking for effective cures for viral infections their characteristic properties also make them promising laboratory and gene therapy tools.https://www.gesundheitsindustrie-bw.de/en/article/dossier/retroviruses-from-infectious-agent-to-therapeutic-assistant
Press release - 02/02/2024 Epigenetic status determines metastasis Scientists from the German Cancer Research Center (DKFZ) and Medical Faculty Mannheim of the Heidelberg University investigated in mice how spreading tumor cells behave at the site of metastasis: Some tumor cells immediately start to form metastases. Others leave the blood vessel and may then enter a long period of dormancy. What determines which path the cancer cells take is their epigenetic status. https://www.gesundheitsindustrie-bw.de/en/article/press-release/epigenetischer-status-entscheidet-ueber-metastasierung
Press release - 13/03/2024 Protection from an unexpected source Contrary to common belief, not all viruses are harmful to their hosts. Sometimes viruses can even protect their hosts from infection by other viruses. Scientists at the Max-Planck-Institute for Medical Research in Heidelberg and their collaborators have now demonstrated that this is the case for so-called endogenous virophages: small DNA viruses that are mostly found inserted into the genomes of single-cell eukaryotes.https://www.gesundheitsindustrie-bw.de/en/article/press-release/protection-unexpected-source
Press release - 09/09/2024 New Molecular Engineering Technique allows for complex Organoids A new molecular engineering technique can precisely influence the development of organoids. Microbeads made of specifically folded DNA are used to release growth factors or other signal molecules inside the tissue structures. This gives rise to considerably more complex organoids that imitate the respective tissues much better and have a more realistic cell mix than before. https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-molecular-engineering-technique-allows-complex-organoids
Press release - 04/09/2024 Epigenetic changes reprogram astrocytes into brain stem cells With mice, researchers showed that experimentally induced lack of blood flow in the brain epigenetically reprograms astrocytes into brain stem cells, which in turn can give rise to nerve progenitor cells. This discovery shows that astrocytes could potentially be used in regenerative medicine to replace damaged nerve cells.https://www.gesundheitsindustrie-bw.de/en/article/press-release/epigenetic-changes-reprogram-astrocytes-brain-stem-cells
Press release - 31/08/2022 Using nanopores to detect epigenetic changes faster Changes known as epigenetic modifications play an important role in cancer development, among other things. Being able to analyze them quickly and reliably could, for example, contribute significantly to the further development of personalized therapy.https://www.gesundheitsindustrie-bw.de/en/article/press-release/using-nanopores-detect-epigenetic-changes-faster
Press release - 18/10/2021 More precise characterization of brain tumors improves diagnosis and therapy An international study with about 3000 patients confirms the validity of a new classification system for meningiomas. It combines tissue characteristics (histology) with molecular analyses and thus improves therapy planning.https://www.gesundheitsindustrie-bw.de/en/article/press-release/more-precise-characterization-brain-tumors-improves-diagnosis-and-therapy
Press release - 24/02/2021 Supposedly "silent" mutation with serious consequences So-called silent mutations have no effect on the composition of a protein. They are therefore not considered to promote cancer. However, scientists from the German Consortium for Translational Cancer Research (DKTK), partner site Essen, now describe in a case of kidney cancer an overlooked silent mutation with a major impact on prognosis.https://www.gesundheitsindustrie-bw.de/en/article/press-release/supposedly-silent-mutation-serious-consequences
Press release - 02/07/2024 DKFZ spin-off Epignostix raises €4.3m seed round to commercialize diagnostic tumor classifier Heidelberg Epignostix GmbH, a deeptech start-up committed to precision cancer diagnostics today announces €4.3M in seed funding. This investment will enable Heidelberg Epignostix to make a substantial leap forward in driving market development for its flagship indication for brain tumor classification.https://www.gesundheitsindustrie-bw.de/en/article/press-release/dkfz-spin-epignostix-raises-euro-43m-seed-round-commercialize-diagnostic-tumor-classifier
Article - 11/06/2019 New pathogens in beef and cow's milk contributing to the risk of cancer A team of researchers led by Nobel laureate Prof. Dr. med. Dr. h.c. mult. Harald zur Hausen has discovered a new type of infectious agent in dairy and meat products produced from European cattle that increases the risk for colon and breast cancer. These so-called Bovine Meat and Milk Factors (BMMFs) are small DNA molecules that are similar in sequence to both bacterial plasmids and certain viruses.https://www.gesundheitsindustrie-bw.de/en/article/news/new-pathogens-in-beef-and-cows-milk-contributing-to-the-risk-of-cancer
Dossier - 06/12/2019 Microbiome: human health is closely connected with our microbial communities People have 1.3 times more microorganisms than body cells. This microbial community influences how we digest our food, how active our immune system is, as well as whether we tend to be more anxious or curious. A number of diseases have also been shown to be associated with a disturbed microbiome. Researchers still have a long way to go before the knowledge acquired can be used for developing therapies.https://www.gesundheitsindustrie-bw.de/en/article/dossier/microbiome-human-health-closely-connected-with-microbial-communities
Press release - 26/07/2021 Vaccination against hereditary colorectal cancer successful in mice Scientists from the German Cancer Research Center and Heidelberg University Hospital have for the first time been able to delay the development of hereditary colorectal cancer with a protective vaccination. Mice with a hereditary predisposition to colorectal cancer survived significantly longer after vaccination than unvaccinated animals. Combining the vaccination with an anti-inflammatory drug increased the protective effect.https://www.gesundheitsindustrie-bw.de/en/article/press-release/vaccination-against-hereditary-colorectal-cancer-successful-mice
Press release - 21/06/2024 New tool maps microbial diversity with unprecedented details Researchers from the Max Planck Institute for Biology Tübingen developed the groundbreaking tool SynTracker. SynTracker expands traditional microbial analysis by considering genomic structural variation to complement existing SNP-based methods. This innovation reveals more precision and depths of microbial strain diversity and evolution.https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-tool-maps-microbial-diversity-unprecedented-details
Press release - 08/02/2022 New European Research Council grant for Max Plack Researcher The European Research Council is funding a large-scale proof-of-concept study on a new genome sequencing method called “Haplotagging”. Haplotagging is a new method for sequencing our genome with superior quality and faster speed, developed by group leader Frank Chan and his team at the Friedrich Miescher Laboratory at the Max Planck Campus, Tübingen, Germany.https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-european-research-council-grant-max-plack-researcher
Press release - 21/04/2023 New research building for engineering life-inspired molecular systems Heidelberg University is to acquire a research building to develop innovative engineering science strategies and technologies on the basis of life-inspired molecular systems. The German Science and Humanities Council has now expressed its backing for the idea with an outstanding rating. This recommendation is the crucial precondition for a new building on the university campus Im Neuenheimer Feld. https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-research-building-engineering-life-inspired-molecular-systems
Press release - 10/01/2022 Algorithm identifies cancer drivers Genetic alterations that promote the development and spread of tumors are difficult to identify. This is especially true for mutations in the non-protein-coding regions of the genome, which include all important regulatory sequences. Scientists at the German Cancer Research Center have now published an algorithm that detects cancer drivers in both the protein-coding and non-coding regions of the genome.https://www.gesundheitsindustrie-bw.de/en/article/press-release/algorithm-identifies-cancer-drivers
Article - 14/01/2021 Newly discovered RNA as growth driver in liver cancer Non-coding RNA (ncRNAs) molecules that do not encode proteins have many different functions, and some are associated with certain diseases. Prof. Dr. Sven Diederichs from the German Consortium for Translational Cancer Research and the German Cancer Research Center in Heidelberg has been conducting research into these molecules at the Freiburg University Medical Centre and discovered a ncRNA that regulates cell proliferation in cancer cells.https://www.gesundheitsindustrie-bw.de/en/article/news/newly-discovered-rna-growth-driver-liver-cancer
Article - 22/03/2019 Personalised therapies for treating metastasing breast cancer Breast cancer is characterised by broad genetic diversity. Successful treatment is made even more difficult by the fact that, in advanced breast cancer, the properties of metastases often differ significantly from the primary tumour. The Heidelberg CATCH study is now collecting genetic profiles from patients' metastasis tissue samples, which can be used to tailor therapy to individual requirements.https://www.gesundheitsindustrie-bw.de/en/article/news/personalisierte-therapieansaetze-bei-metastasiertem-brustkrebs
Press release - 25/10/2023 Epigenetically acting drugs could support cancer immunotherapy Epigenetically active drugs enable the cell to read parts of the genome that were previously blocked and inaccessible. This leads to the formation of new mRNA transcripts and also new proteins, as scientists from the German Cancer Research Center and the University Hospital Tübingen have now published. These "therapy-induced epitopes" could help the immune system recognize cancer cells.https://www.gesundheitsindustrie-bw.de/en/article/press-release/epigenetically-acting-drugs-could-support-cancer-immunotherapy
Press release - 25/10/2023 Epigenetically acting drugs could support cancer immunotherapy Epigenetically active drugs enable the cell to read parts of the genome that were previously blocked and inaccessible. This leads to the formation of new mRNA transcripts and also new proteins, as scientists from the German Cancer Research Center and the University Hospital Tübingen have now published. These "therapy-induced epitopes" could help the immune system recognize cancer cells.https://www.gesundheitsindustrie-bw.de/en/article/press-release/epigenetisch-wirkende-medikamente-koennten-krebs-immuntherapie-unterstuetzen