Jump to content
Powered by BIOPRO BW
  • BIOPRO BW
  • Healthcare industry
  • Project pages
    • MDR & IVDR
    • Innovation & Startups

Healthcare industry Logo

Main navigation

  • Start page Start page
  • Healthcare industry BW

    Healthcare industry BW

    Close Close
    • At a glance
    • The biotechnology sector
    • Medical technology
    • The pharmaceutical industry
    • Training & university education
    • Company foundation
    • Infrastructure
    • Clusters & Networks
  • Articles

    Articles

    Close Close
    • Latest news
    • Selected press releases
    • Dossiers
    • Red biotechnology
    • Medical technology
    • Pharmaceutics
    • Diagnostics
    • Basic research
    • Selected publications
  • Events

    Events

    Close Close
  • Databases

    Databases

    Close Close
    • Funding
    • Healthcare industry database
    • Research institutions
  • BIOPRO services

    BIOPRO services

    Close Close
    • BIOPRO services and offers
    • Contacts
    • Information channels
  • de
  • en
Show menu Show menu

You are here:

  1. Home
  2. Search
Show:Results per page
  • 25Show results
  • 50Show results
  • 75Show results

Search Results

  • Gene regulation as a starting point for cancer therapies - 02/12/2021 Schematische Darstellung der verschiedenen Stadien der Genexpression. Nukleinsäurestränge sind durch farbige Linien, Proteine durch farbige Ellipsen und die Methylierung durch kleine Kreise dargestellt.

    New investigation method for deciphering complex epigenetic networks

    The development and maintenance of uncontrolled cell division in tumours is often due to the unbalanced, complex interplay of regulatory epigenetic networks. Researchers at the Institute of Biochemistry and Technical Biochemistry in Stuttgart have developed a new screening system to identify essential components that can serve as targets for anticancer drugs.

    https://www.gesundheitsindustrie-bw.de/en/article/news/new-investigation-method-deciphering-complex-epigenetic-networks
  • Dossier - 10/11/2014 22065_de.jpg

    Cell and gene therapies from bench to bedside

    While cell therapy has become standard treatment for a number of blood cancers, most cell and gene therapy approaches for the treatment of hereditary and metabolic diseases, neurodegenerative disorders and cancer are still in the experimental phases or early clinical trials. However, recent successes give rise to the hope that cell and gene therapies will in future make important contributions to previously incurable diseases.

    https://www.gesundheitsindustrie-bw.de/en/article/dossier/cell-and-gene-therapies-from-bench-to-bedside
  • Press release - 13/06/2024

    Which of the two DNA strands is damaged influences the cell's mutation profile

    Cancer genomes are the result of diverse mutation processes. Scientists have analyzed the molecular evolution of tumors after exposure to mutagenic chemicals. DNA lesions that persists unrepaired over several cell generations lead to sequence variations at the site of damage. This enabled the researchers to distinguish the contribution of the triggering lesion from that of the subsequent repair in shaping the mutation pattern.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/which-two-dna-strands-damaged-influences-cells-mutation-profile
  • Press release - 14/01/2025

    Epigenetics ensures placenta functioning

    If the development of blood vessels in the placenta is impaired, fetal growth retardation may result. Scientists from the German Cancer Research Center (DKFZ) and the Mannheim Medical Faculty of Heidelberg University discovered that the correct development of functioning blood vessels in the mouse placenta is controlled epigenetically: One of the enzymes that modify gene activity using methyl groups is responsible.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/epigenetics-ensures-placenta-functioning
  • Press release - 20/06/2023

    CureVac Doses First Patient in Phase 1 Study of Cancer Vaccine Candidate for Surgically Resected Glioblastoma

    CureVac N.V. today announced that it has dosed the first patient with its investigational cancer vaccine CVGBM in a Phase 1 study. CVGBM is based on CureVac’s proprietary second-generation mRNA backbone and features a single mRNA, encoding eight epitopes derived from known tumor-associated antigens with demon­strated relevance in glioblastoma. A first data readout is expected in the second half of 2024.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/curevac-doses-first-patient-phase-1-study-cancer-vaccine-candidate-surgically-resected-glioblastoma
  • Article - 22/03/2019 Prof. Lichter (left) and Prof. Schneeweiss, who run the Translational Breast Cancer Programme in Heidelberg, in the laboratory

    Personalised therapies for treating metastasing breast cancer

    Breast cancer is characterised by broad genetic diversity. Successful treatment is made even more difficult by the fact that, in advanced breast cancer, the properties of metastases often differ significantly from the primary tumour. The Heidelberg CATCH study is now collecting genetic profiles from patients' metastasis tissue samples, which can be used to tailor therapy to individual requirements.

    https://www.gesundheitsindustrie-bw.de/en/article/news/personalisierte-therapieansaetze-bei-metastasiertem-brustkrebs
  • Dossier - 01/04/2013 19423_de.jpg

    Retroviruses from infectious agent to therapeutic assistant

    Viruses are infectious particles that use the machinery and metabolism of a host cell to replicate. The family of retroviruses is particularly known for its most notorious representative i. e. the human immunodeficiency virus HIV. However retroviruses are not only of interest for researchers looking for effective cures for viral infections their characteristic properties also make them promising laboratory and gene therapy tools.

    https://www.gesundheitsindustrie-bw.de/en/article/dossier/retroviruses-from-infectious-agent-to-therapeutic-assistant
  • Press release - 25/10/2023

    Epigenetically acting drugs could support cancer immunotherapy

    Epigenetically active drugs enable the cell to read parts of the genome that were previously blocked and inaccessible. This leads to the formation of new mRNA transcripts and also new proteins, as scientists from the German Cancer Research Center and the University Hospital Tübingen have now published. These "therapy-induced epitopes" could help the immune system recognize cancer cells.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/epigenetically-acting-drugs-could-support-cancer-immunotherapy
  • Press release - 25/10/2023

    Epigenetically acting drugs could support cancer immunotherapy

    Epigenetically active drugs enable the cell to read parts of the genome that were previously blocked and inaccessible. This leads to the formation of new mRNA transcripts and also new proteins, as scientists from the German Cancer Research Center and the University Hospital Tübingen have now published. These "therapy-induced epitopes" could help the immune system recognize cancer cells.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/epigenetisch-wirkende-medikamente-koennten-krebs-immuntherapie-unterstuetzen
  • microRNA as a prognostic biomarker - 13/01/2022 Screen of an ECG device showing the typical action potentials of the heart muscle.

    Heart attack diagnosis: fast and unambiguous thanks to artificial intelligence

    People that arrive in emergency rooms with chest pain require swift action in order to rule out a heart attack or to initiate vital life-saving therapy. However, despite many advances, current tests are not yet optimal: they either take hours or produce false-positive results. Researchers at Heidelberg University Hospital are now using AI in an approach that takes microRNAs from a blood sample to specifically diagnose ‘acute coronary syndrome’.

    https://www.gesundheitsindustrie-bw.de/en/article/news/heart-attack-diagnosis-fast-and-unambiguous-thanks-artificial-intelligence
  • Press release - 04/03/2021

    Induced pluripotent stem cells reveal causes of disease

    Induced pluripotent stem cells (iPSC) are suitable for discovering the genes that underly complex and also rare genetic diseases. Scientists from the German Cancer Research Center (DKFZ) and the European Molecular Biology Laboratory (EMBL), together with international partners, have studied genotype-phenotype relationships in iPSCs using data from approximately one thousand donors.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/induced-pluripotent-stem-cells-reveal-causes-disease
  • Press release - 10/01/2022

    Algorithm identifies cancer drivers

    Genetic alterations that promote the development and spread of tumors are difficult to identify. This is especially true for mutations in the non-protein-coding regions of the genome, which include all important regulatory sequences. Scientists at the German Cancer Research Center have now published an algorithm that detects cancer drivers in both the protein-coding and non-coding regions of the genome.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/algorithm-identifies-cancer-drivers
  • Press release - 18/10/2023

    SARS-CoV-2: Alert immune system in the respiratory tract protects children from severe courses of the disease

    Why are severe courses of SARS-CoV-2 infection less common in children and adolescents than in adults? Scientists at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have now discovered that the immune system in the upper respiratory tract is much more alert and active in children before infection than in adults and is therefore better equipped to fight the virus.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/sars-cov-2-aktiveres-immunsystem-den-atemwegen-schuetzt-kinder-vor-schweren-verlaeufen
  • Press release - 17/04/2024

    Cell Biology: Molecular Code Stimulates Pioneer Cells to Build Blood Vessels in the Body

    Cardiovascular diseases, including stroke and myocardial infarction, are the world's leading causes of mortality, accounting for over 18 million deaths a year. A team of KIT researchers has now identified a new cell type in blood vessels responsible for vascular growth. This discovery may allow for novel therapeutic strategies to treat ischemic cardiovascular diseases, i.e. diseases that are caused by reduced or absent blood flow.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/zellbiologie-molekularer-code-regt-pionierzellen-zum-aufbau-von-blutgefaessen-im-koerper
  • Press release - 16/01/2025

    New weapons against viruses

    Dr. Petr Chlanda, virologist and research group leader at the Heidelberg Medical Faculty of Heidelberg University, has been awarded more than 720,000 euros in funding from the European Union for his research into new therapies against viruses. His work is part of the interdisciplinary, international DEFENDER project, which is developing innovative approaches to combat emerging and re-emerging viruses.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-weapons-against-viruses
  • Chronic inflammatory bowel diseases - 25/09/2024 Vor schwarzem Hintergrund sind kugelförmige Zellansammlungen zu sehen.

    Proinflammatory regulatory T lymphocytes as a therapeutic target in Crohn's disease

    Chronic inflammatory bowel diseases are very stressful for those affected and increase the risk of bowel cancer. PD Dr. Robyn Laura Kosinsky from the Bosch Health Campus in Stuttgart, together with researchers from the USA, identified disfunctional regulatory T cells as important drivers of inflammation in Crohn's disease. They also found that with the help of an epigenetically active drug, it was possible to restore the cells’ original…

    https://www.gesundheitsindustrie-bw.de/en/article/news/proinflammatory-regulatory-t-lymphocytes-therapeutic-target-crohns-disease
  • Viral zoonoses - 24/01/2022 Schematic drawing of a flavivirus polyprotein anchored in the ER membrane. The different viral proteins are indicated by differently coloured sections on the polyprotein that is marked with dashes and the protease interfaces are marked by arrows.

    Development of inhibitors that help stop viral zoonoses

    Emerging viral infections such as COVID-19 or Zika disease pose an increasing threat to humans. At the Institute of Pharmacy and Molecular Biotechnology (IPMB) at Heidelberg University, Prof. Dr. Christian Klein's research group is developing inhibitors against already known viruses in the hope that these can also be used against new virus variants.

    https://www.gesundheitsindustrie-bw.de/en/article/news/development-inhibitors-help-stop-viral-zoonoses
  • Press release - 06/01/2023

    CureVac Announces Positive Data on Joint COVID-19 and Flu mRNA Vaccine Development Programs

    CureVac N.V. (Nasdaq: CVAC), a global biopharmaceutical company developing a new class of transformative medicines based on messenger ribonucleic acid (“mRNA”), today announced positive preliminary data from ongoing Phase 1 clinical programs in COVID-19 and seasonal flu, assessing both modified and unmodified mRNA technology. The tested vaccine candidates are being developed in collaboration with GSK.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/curevac-announces-positive-data-joint-covid-19-and-flu-mrna-vaccine-development-programs
  • Gene regulation - 20/07/2021 Vor schwarzem Hintergrund ist ein gelb leuchtendes Chromosom zwischen blau gefärbten Chromosomen sichtbar.

    The many faces of the epigenetic regulator MOF

    Epigenetic modifications play a crucial role in coordinated gene transcription, and are required for a fertilised egg cell to be able to develop into an organism with different cell types. Dr. Asifa Akhtar from the Max Planck Institute of Immunobiology and Epigenetics in Freiburg has been studying the essential epigenetic regulator protein MOF for 20 years.

    https://www.gesundheitsindustrie-bw.de/en/article/news/die-vielen-gesichter-des-epigenetischen-regulators-mof
  • Press release - 25/05/2021

    How “paralyzed” immune cells can be reactivated against brain tumors

    Brain tumor cells with a certain common mutation reprogram invading immune cells. This leads to the paralysis of the body's immune defense against the tumor in the brain. Researchers from Heidelberg, Mannheim, and Freiburg discovered this mechanism and at the same time identified a way of reactivating the paralyzed immune system to fight the tumor.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/how-paralyzed-immune-cells-can-be-reactivated-against-brain-tumors
  • Press release - 30/10/2024

    Diabetes switch in DNA: Non-coding region in the genome influences ONECUT1 gene

    They are underestimated genetic control elements: it is known that changes in the genome can trigger diabetes. But now researchers at the University Hospital Ulm and the INSERM Cochin Institute in Paris have shown that a previously under-researched region of the genome also plays a crucial role in the development of this disease.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/diabetes-switch-dna-non-coding-region-genome-influences-onecut1-gene
  • Trenzyme GmbH - 20/05/2020 Coronavirus im Elektronenmikroskop

    The SARS-CoV spike protein and its receptor

    The SARS-CoV-2 coronavirus uses a spike protein to bind to the ACE2 receptor on the cell surfaces of lung tissue. Additional cofactors are needed to allow the virus genome to penetrate human cells and multiply. Knowing these relationships can help understand the course of the infection and develop counterstrategies. To this end, the Constance-based company Trenzyme has produced a recombinant spike protein to support coronavirus research.

    https://www.gesundheitsindustrie-bw.de/en/article/news/the-sars-cov-spike-protein-and-its-receptor
  • Bioinspired technologies - 03/04/2020 Foto vom Biosensor in Brauntönen; darauf eingezeichnet sind die elektrochemischen Funktionsprinzipien mit Strukturformeln.

    Diagnostics with molecular scissors – is this also possible for on-site COVID-19 tests?

    The CRISPR-Cas gene-editing technology is one of the most important developments in molecular biology in recent years. It utilises molecular scissors with which nucleic acids can be cut and edited almost arbitrarily. Researchers in Freiburg, Germany have now successfully used the technology for diagnostic purposes. They are currently working intensively on expanding the system to enable it to detect genome sequences of the novel SARS-CoV-2 virus.

    https://www.gesundheitsindustrie-bw.de/en/article/news/Diagnostics-with-molecular-scissors-is-this-also-possible-for-on-site-COVID-19-tests
  • Dossier - 12/03/2012 One hand holds a cell culture plate with six different cell cultures

    Regenerative medicine makes use of patients own resources

    Die Regenerative Medizin bietet neue Therapieoptionen quer durch die ärztlichen Fachgebiete. Zumeist sind es zellbasierte Verfahren und sie werden häufig mit innovativen Biomaterialien kombiniert. Regenerative Therapien vereinen Know-how aus den Biowissenschaften mit moderner Medizintechnik und sie profitieren von den Fortschritten in den Ingenieur- und Materialwissenschaften.

    https://www.gesundheitsindustrie-bw.de/en/article/dossier/regenerative-medicine-makes-use-of-patients-own-resources
  • Press release - 09/11/2022

    New Molecular Microscopy Uncovers how Breast Cancer Spreads

    Researchers have created a tool that maps how breast cancer grows in previously unseen detail, and highlights how the cells around the tumour may be the key to controlling the spread of disease. The new technology can trace which populations of breast cancer cells are responsible for the spread of the disease, and for the first time highlights how the location of cancer cells could be as important as mutations in tumor growth The new study is…

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-molecular-microscopy-uncovers-how-breast-cancer-spreads

Page 2 / 3

sb_search.block.search_result.other.pages

  • eine Seite vor
  • 1
  • 2
  • 3
  • eine Seite zurück
  • Extend search to all portals
  • Search the Healthcare industry database
  • Search the Research institutions
Search terms
Portal
Information type
  • Type
    Event date
    From
    To
  • Type
  • Publication date
    Topics
    Topics
  • Publication date
Reset

Footer navigation

  • Healthcare industry BW
    • At a glance
    • The biotechnology sector
    • Medical technology
    • The pharmaceutical industry
    • Training & university education
    • Company foundation
    • Infrastructure
    • Clusters & Networks
  • Articles
    • Latest news
    • Selected press releases
    • Dossiers
    • Red biotechnology
    • Medical technology
    • Pharmaceutics
    • Diagnostics
    • Basic research
    • Selected publications
  • Events
  • Databases
    • Funding
    • Healthcare industry database
    • Research institutions
  • BIOPRO services
    • BIOPRO services and offers
    • Contacts
    • Information channels
  • Project pages
    • MDR & IVDR
    • Innovation & Startups
  • Portals
    • BIOPRO BW
    • Healthcare industry
  • To top

stay informed

Newsletter abonnieren

Social Media

  • Xing Xing
  • Twitter visit Twitter
  • LinkedIn visit LinkedIn
  • Rss visit RSS
  • Privacy statement
  • Accessability Declaration
  • Legal notice
  • Sitemap
  • Contact
© 2025
Website address: https://www.gesundheitsindustrie-bw.de/en/search