Jump to content
Powered by
  • BIOPRO BW
  • Healthcare industry
  • Bioeconomy
  • Project pages
    • Telemedicine BW
    • MDR & IVDR
    • Erlebnisraum Bioökonomie
    • Innovation & Startups

Healthcare industry

Main navigation

  • Start page
  • Healthcare industry BW

    Healthcare industry BW

    Close
    • At a glance
    • The biotechnology sector
    • Medical technology
    • The pharmaceutical industry
    • Training & university education
    • Company foundation
    • Infrastructure
    • Clusters & Networks
  • Articles

    Articles

    Close
    • Latest news
    • Selected press releases
    • Dossiers
    • Red biotechnology
    • Medical technology
    • Pharmaceutics
    • Diagnostics
    • Basic research
    • Selected publications
  • Events

    Events

    Close
  • Databases

    Databases

    Close
    • Funding
    • Healthcare industry database
    • Research institutions
  • BIOPRO services

    BIOPRO services

    Close
    • BIOPRO services and offers
    • Contacts
    • Information channels
  • de
  • en
Show menu

You are here:

  1. Home
  2. Search
Show:Results per page
  • 25Show results
  • 50Show results
  • 75Show results

Search Results

  • Nanoparticles as drug carriers - 09/11/2023 Zu sehen ist eine Mikroskopie-Aufnahme, die mit Mykobakterien infiziertes Lungengewebe inklusive Nanocarrier zeigt.

    Inhalation of nanocarriers for antibiotics against resistant tuberculosis pathogens

    Around ten million people worldwide still contract tuberculosis every year. With an estimated 1.4 million deaths a year, tuberculosis was the world’s deadliest infectious disease until COVID-19. The high mortality rate is down to the sophisticated biology of the pathogen Mycobacterium tuberculosis. A team of researchers from the KIT and the Research Centre Borstel (FZB) has developed a method that aims to outsmart the bacterium once and for all.

    https://www.gesundheitsindustrie-bw.de/en/article/news/inhalation-nanocarriers-antibiotics-against-resistant-tuberculosis-pathogens
  • Project BlindZero - 03/08/2023 The two researchers in the laboratory in front of the 3D printer and with a Petri dish with the cornea in their hands.

    Hope for patients with eye diseases: human cornea from 3D printers

    Thousands of cornea transplants are performed every year. However, donors are rare and the procedure is not always without complications. Researchers at the University of Heidelberg are developing an innovative technique in the project BlindZero. It involves ‘printing’ human corneas directly onto patients’ eyes using 3D bioprinting. The reprogrammed genetically engineered cells used for this purpose are not expected to cause a rejection reaction.

    https://www.gesundheitsindustrie-bw.de/en/article/news/hope-patients-eye-diseases-human-cornea-3d-printers
  • Press release - 02/08/2023

    Freiburg research team casts light on signal-dependent formation of mitochondria

    Known as the power plant of the cell, mitochondria are essential to human metabolism. Human mitochondria consist of 1,300 different proteins and two fatty biomembranes. The vast majority of mitochondrial proteins are produced with a cleavable transport signal and have to be actively transported into the mitochondria.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/freiburger-forschungsteam-klaert-signalabhaengige-bildung-von-mitochondrien-auf
  • Tumour organoids facilitate drug discovery - 20/07/2023 A woman in a white lab coat is sitting at a computer whose screen shows various miniature tumors after drug treatment.

    Drug screening for children with cancer using patient-specific miniature tumours

    Standard drugs often don’t work in children and adolescents with recurrent cancer. Researchers from the Hopp Children's Tumour Centre (KITZ) and the German Cancer Research Center (DKFZ) in Heidelberg have been looking to open up new therapy options for those affected, and have cultivated individual miniature tumours from biopsy samples to test the effectiveness of a variety of drugs within a few weeks.

    https://www.gesundheitsindustrie-bw.de/en/article/news/drug-screening-children-cancer-using-patient-specific-miniature-tumours
  • Press release - 17/05/2023

    Playing hide and seek in the centromere

    Centromeres, the DNA sections often found at the center of the chromosomes, display enormous interspecies diversity, despite having the same vital role during cell division across almost the entire tree of life. An international team of researchers has discovered that the variation in centromere DNA regions can be strikingly large even within a single species. The findings, now published in the journal Nature, shed light on the molecular…

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/playing-hide-and-seek-centromere
  • Press release - 01/03/2023

    Pseudomonas aeruginosa Bacteria produce a molecule that paralyzes immune system cells

    Bacteria of the species Pseudomonas aeruginosa are antibiotic-resistant hospital germs that can enter blood, lungs and other tissues through wounds and cause life-threatening infections. In a joint project, researchers from the Universities of Freiburg and Strasbourg in France have discovered a mechanism that likely contributes to the severity of P. aeruginosa infections.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/pseudomonas-aeruginosa-bakterien-stellen-ein-molekuel-her-das-zellen-des-immunsystems-laehmt
  • Cytolytics GmbH - 14/02/2023 Colour photo of Can (left) and Serina (right) Pinar

    Bioinformatics meets medical diagnostics and drug development

    The start-up company Cytolytics from Tübingen has developed a robust and user-friendly software platform that uses machine learning for the automated analysis of cells. This is beneficial in areas such as cancer diagnostics and the development of new pharmaceutically active substances.

    https://www.gesundheitsindustrie-bw.de/en/article/news/bioinformatics-meets-medical-diagnostics-and-drug-development
  • Press release - 02/11/2022

    How Cells Find the Right Partners

    During the growth and development of living organisms, different types of cells must come into contact with each other in order to form tissues and organs together. A small team working with Prof. Dr. Anne Classen of the Excellence Cluster CIBSS of the University of Freiburg has discovered that complex changes in form, or morphogenesis, during development are driven exclusively via the affinity of cells to each other.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/how-cells-find-right-partners
  • Press release - 18/08/2022

    When smooth muscle cells lack strength

    University of Tübingen team discovers how malformations of the blood vessels can occur in mice – yielding information with possible ramifications for retinal disease.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/when-smooth-muscle-cells-lack-strength
  • Biotech in outer space - 06/07/2022 Scientist in the laboratory at a cell culture workbench with a cell chamber

    yuri, a space start-up: weightlessness for commercial research

    Growing cells without the effect of gravity could revolutionise drug development. A start-up called yuri on Lake Constance enables made-to-measure experiments on the ISS for stem cells, artificial organs, surfaces and materials. On board the next mission are some mini-cell labs from Berlin's Charité and Goethe University Frankfurt.

    https://www.gesundheitsindustrie-bw.de/en/article/news/yuri-space-start-weightlessness-commercial-research
  • Press release - 21/06/2022

    Another step towards synthetic cells

    Scientists from the 2. Physics Institute at the University of Stuttgart and the Max Planck Institute for Medical Research were now able to take the next step towards synthetic cells: They introduced functional DNA-based cytoskeletons into cell-sized compartments and showed functionality. The results were recently published in Nature Chemistry.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/another-step-towards-synthetic-cells
  • Press release - 09/09/2021

    Machine learning improves biological image analysis

    Scientists use super-resolution microscopy to study previously undiscovered cellular worlds, revealing nanometer-scale details inside cells. This method revolutionized light microscopy and earned its inventors the 2014 Nobel Prize in Chemistry. In an international collaboration, AI researchers from Tübingen have now developed an algorithm that significantly accelerates this technology.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/machine-learning-improves-biological-image-analysis
  • Press release - 02/09/2021

    Award-winning science: Cancer-promoting metabolic pathways as targets of new therapies

    Christiane Opitz, scientist at the German Cancer Research Center, is being awarded this year's Ita Askonas Prize of the European Federation of Immunological Societies. Opitz has discovered how tumor cells use certain metabolites to protect themselves against the immune system. Her research findings may provide important clues for the development of new therapeutic concepts.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/award-winning-science-cancer-promoting-metabolic-pathways-targets-new-therapies
  • Press release - 06/07/2021

    High-throughput metabolic profiling of single cells

    Scientists from the EMBL and the German Cancer Research Center have presented a new method for generating metabolic profiles of individual cells. The method, which combines fluorescence microscopy and a specific form of mass spectroscopy, can analyze over a hundred metabolites and lipids from more than a thousand individual cells per hour. Researchers expect the method to better answer a variety of biomedical questions in the future.

    https://www.gesundheitsindustrie-bw.de/en/article/press-release/high-throughput-metabolic-profiling-single-cells
  • Atriva Therapeutics - 21/10/2020 Kulturschalen mit blau angefärbten Zellen, zu denen das neue Coronavirus (SARS CoV-2) gegeben wurde. Die mit dem Wirkstoff ATR-002 von Atriva Therapeutics behandelten Zellen (rechte Reihen) zeigen keine weißen Löcher im Zellrasen und somit keine Zellzerstörung.

    COVID-19 pioneer drug in Phase II clinical trial - with double the power

    The effective treatment of people with severe COVID-19 is a major goal during the corona pandemic. ATR-002, an oral small molecule that targets RNA viruses such as influenza virus and SARS-CoV-2, has a dual effect: it impairs viral propagation and also has an immunomodulatory effect. And what’s more, due to its unique cellular mechanism of action, the efficacy of Atrivia Therapeutics’ drug candidate is not reduced by virus mutations and…

    https://www.gesundheitsindustrie-bw.de/en/article/news/covid-19-pioneer-drug-phase-ii-clinical-trial-double-power
  • Material research - 25/05/2020 Das Team der Yuri GmbH in Meckenbeuren

    Reaching up into weightlessness – a start-up that enables commercial research experiments in space

    Yuri, a start-up company founded in 2019 in the Lake Constance area, is aiming high. The company’s mission is to enable microgravity research into the development of materials, new medicines and vaccines, including research opportunities on the International Space Station (ISS). Yuri’s tailor-made solutions are faster and more affordable than previous space research missions.

    https://www.gesundheitsindustrie-bw.de/en/article/news/reaching-up-into-weightlessness-a-start-up-enables-commercial-research-experiments-in-space
  • Overview

    Basic research

    https://www.gesundheitsindustrie-bw.de/en/article/research
  • Dossier - 20/01/2014 Light microscope image of Chlamydomonas green algae.

    Optogenetics switching cell activity on and off with light

    What still sounds like science fiction to the general public has long been within reach for many years scientists have been able to manipulate neural activity selectively with light. They use different wavelengths to turn cells on and off as if they were a standard switch. Optogenetics is an emerging technology that combines optics and genetics. The technology is already used in many different ways for many different purposes by numerous research…

    https://www.gesundheitsindustrie-bw.de/en/article/dossier/optogenetics-switching-cell-activity-on-and-off-with-light
  • Dossier - 18/06/2012

    Biobanks treasure chests for biomedical research

    Biobanking is still a very specialist subject. The Research Committee at the German Bundestag, the Office of Technology Assessment at the German Bundestag and the German Ethics Council are all interested in this biomedical research tool, which is both necessary and meaningful. However, opinions with regard to the ethical, legal and technical approach to biobanks differ. Since March 2012 it has become absolutely clear that Germany will not pass a…

    https://www.gesundheitsindustrie-bw.de/en/article/dossier/biobanks-treasure-chests-for-biomedical-research
  • Extend search to all portals
  • Search the Healthcare industry database
  • Search the Research institutions
Search terms
Portal
Information type
  • Type
    Event date
    From
    To
  • Type
  • Publication date
    Topics
    Topics
  • Publication date
Reset

Footer navigation

  • Healthcare industry BW
    • At a glance
    • The biotechnology sector
    • Medical technology
    • The pharmaceutical industry
    • Training & university education
    • Company foundation
    • Infrastructure
    • Clusters & Networks
  • Articles
    • Latest news
    • Selected press releases
    • Dossiers
    • Red biotechnology
    • Medical technology
    • Pharmaceutics
    • Diagnostics
    • Basic research
    • Selected publications
  • Events
  • Databases
    • Funding
    • Healthcare industry database
    • Research institutions
  • BIOPRO services
    • BIOPRO services and offers
    • Contacts
    • Information channels
  • Project pages
    • Telemedicine BW
    • MDR & IVDR
    • Erlebnisraum Bioökonomie
    • Innovation & Startups
  • Portals
    • BIOPRO BW
    • Healthcare industry
    • Bioeconomy
  • To top

stay informed

Newsletter abonnieren

Social Media

  • Xing
  • Twitter
  • LinkedIn
  • Rss
  • Privacy statement
  • Legal notice
  • Sitemap
  • Contact
© 2023
Website address: https://www.gesundheitsindustrie-bw.de/en/search