Powered by

Gesundheitsforschung mit Mikrosystemen

Auf Einladung des NMI Naturwissenschaftliches und Medizinisches Institut Reutlingen trafen sich vom 8. bis zum 11. Juli über 200 Entwickler und Anwender von Mikroelektroden-Arrays aus 18 Länder in Reutlingen. In 147 Beiträgen stellten sie ihre neuesten Entwicklungen und Ergebnisse aus der physiologischen Grundlagenforschung und der industriellen Wirkstoffforschung vor.

Neuronales Netzwerk auf einem Mikroelektrodenarray (Antikörperfärbung) (Photo: Universität Hokkaido)
Das Gehirn ist ein komplexes informationsverarbeitendes System. Milliarden von miteinander verschalteten Nervenzellen verarbeiten enorme Informationsmengen innerhalb von Sekundenbruchteilen. Die Nervenzellen leiten Informationen in Form von elektrischen Signalen weiter. Das Konzert der Nervenzellen ergibt ein hochkomplexes raum-zeitliches, elektrisches Aktivitätsmuster, in dem unsere Wahrnehmungen, unser Denken und Handeln, unsere Emotionen kodiert sind. Wie dieser Code allerdings aussieht und mit welchen Codes Nervenzellen miteinander kommunizieren, ist noch weitgehend unbekannt und Gegenstand vieler Forschungsarbeiten.

Ein übliches Verfahren, die Arbeitsweise von kleineren Nervenzellnetzwerken zu untersuchen, ist die Messung und Analyse von raum-zeitlichen Aktivitätsmustern in Gehirnschnitten und neuronalen Netzwerken aus hunderten oder tausenden kultivierten Nervenzellen. Als Standardtechnik, die die gleichzeitige Messung an vielen Stellen der Präparate und Kulturen erlaubt, hat sich die Mikroelektroden-Array-Technik durchgesetzt.

Mikroelektroden-Arrays, kurz MEAs, sind kleine Glasplättchen, auf denen bis zu mehrere Hundert mikroskopisch kleine Elektroden angeordnet sind. Auf solchen Glasplättchen können Nervenzellen und Gewebestücke aus Hirnpräparaten über Wochen und Monate hinweg kultiviert werden. Über die Elektroden lassen sich die Zellen elektrisch stimulieren und ihre elektrische Aktivität messen. Die Modellpräparate werden außer in der neurophysiologischen Grundlagenforschung auch in der industriellen Wirkstofffindung für Krankheiten wie Epilepsie, Schlaganfall, Schizophrenie, Alzheimer sowie Herz-Kreislauf Erkrankungen eingesetzt.

Aktuelle Ergebnisse und Entwicklungen diskutieren

Alle zwei Jahre treffen sich in Reutlingen die Entwickler und Anwender der MEA-Technik. Das vom NMI ausgerichtete Treffen ist das wichtigste internationale Informations- und Diskussions-Forum zur MEA-Technik. Experten, Studenten und interessierte Wissenschaftler nutzen die Gelegenheit um aktuelle Ergebnisse und Entwicklungen zu diskutieren und neue Kooperationen anzubahnen. Wichtige Themen des diesjährigen Treffens waren Struktur, Dynamik und Plastizität der neuronalen Aktivität in neuronalen Netzwerken, Methoden zur Analyse von neuronalen Aktivitätsmustern, die Verwendung der Technik für pharmakologische, toxikologische und neurotechnologische Untersuchungen sowie zahlreiche technische Neu- und Weiterentwicklungen.

Die Konferenz wurde von Shimon Marom vom Technion, dem israelischen Technologieinstitut in Haifa, eröffnet. Marom, der wesentlich zur Verwendung von MEAs zur Netzwerkanalyse beigetragen hat, berichtete in seinem Vortrag über die Ordnung der Reihenfolge, mit der Neurone in kleinen Netzwerken auf lokalisierte Stimulationen reagieren. Diese Ordnung repräsentiert dadurch Informationen über die Stimulationsmuster. Neben der Frage, wie Information neuronal codiert wird, ist die Frage, wie bestimmte Gene das Verhalten beeinflussen, eine weitere große Herausforderung der modernen Neurowissenschaften. MEAs werden dabei als Screeningtools eingesetzt, um große Versuchsreihen mit Hirnschnitten von mutierten Tieren durchzuführen, wie Arjen Brussaard von der Universität Amsterdam berichtete. Als Screeningtool verwendet auch Tim Holy von der Universität Washington in St. Lois, USA, Mikroelektroden-Arrays. Er berichtete über die Identifizierung von Pheromonen anhand der Wirkung von aus dem Urin von Mäusen isolierten Substanzen auf die Aktivität von kultivierten Neuronen aus dem olfaktorischen System.

Über die Anwendung von MEAs im Bereich Tissue Engineering berichtete Lior Gebstein, ebenfalls vom Technion, in seinem Vortrag über die Fortschritte bei zelltherapeutischen Behandlungsstrategien mit Stammzellen zur Behandlung von Fehlfunktionen des Herzens. Transplantierte Stammzellen sollen bei einer Dysfunktion die Aufgabe von Herzmuskelzellen übernehmen. Obwohl im Tierexperiment gezeigt wurde, daß dieser Ansatz prinzipiell funktioniert, sind klinische Studien oder gar ein Routineverfahren noch nicht in Sicht.

Die ständige Weiterentwicklung der MEA-Technologie ist getrieben von dem Wunsch nach erhöhter räumlicher Auflösung bei der Abtastung der Aktivitätsmuster sowie verbesserten Möglichkeiten zur Analyse und Reduktion der enormen Datenmengen, die bei den Experimenten im Labor anfallen.

NMI Reutlingen einer der Pioniere der MEA-Technik

Hirnschnitt auf einem CMOS-basierten Mikroelektrodenarray (Photo: ETH Zürich)
Während die am meisten verwendeten MEAs aus Glas sechzig Elektroden enthalten, erlauben Weiterentwicklungen die Messung zellulärer Aktivität mit bis zu 1024 Elektroden. Damit ist aber auch die Grenze dessen erreicht, was mit einfachen Leiterbahnen auf dem Glassubstrat noch kontaktiert werden kann. Die räumliche Dichte der Elektroden ist dadurch ebenfalls begrenzt. Für detaillierterte Untersuchungen der Aktivität einzelner Zellen im Konzert eines ausgedehnten neuronalen Netzwerkes ist dies jedoch nicht genug. Mit der CMOS-Technologie lassen sich diese Grenzen überwinden. In mehreren Beiträgen wurden Entwicklungen und Anwendungen verschiedener Arrays mit 4096 Elektroden (Institut für Mikrotechnologie, Universität Neuchatel, CH), 11016 Elektroden (ETH Zürich) und 16384 Ableitorten auf 1 mm² (Max-Planck-Institut, Martinsried) vorgestellt. Andreas Hierlemann von der ETH Zürich betonte in seinem Vortrag die Möglichkeiten, mittels CMOS-Technologie hohe Elektrodendichten (3150 Elektroden pro mm²) bei gleichzeitig hohem Signal-Rausch-Verhältnis durch integrierte Schaltkreise zur On-chip Signalfilterung und -verarbeitung realisieren zu können.

Das NMI in Reutlingen ist einer der Pioniere der MEA-Technik. Seit über 20 Jahren wird diese Technik laufend weiterentwickelt, vereinfacht und zunehmend automatisiert. Besondere Elektrodenmaterialien ermöglichen sehr rauscharme Messungen. Mit neuen Materialkombinationen und Fertigungsverfahren entstehen MEAs für neue Anwendungen. Im institutseigenen Reinraum werden die MEAs gefertigt und an den Entwicklungs- und Vertriebspartner Multi Channel Systems MCS GmbH, Reutlingen, ausgeliefert. Multi Channel Systems entwickelt elektronische Messsysteme und Software für die nicht-klinische Elektrophysiologie.

Nachdem sich der japanische Hauptwettbewerber Panasonic mehr und mehr aus diesem Markt zurückzieht, ist die 1996 gegründete Firma zum weltweit bedeutensten Anbieter der MEA-Technologie aufgerückt. Ihr Marktanteil liegt bei zirka 90 Prozent.

Die Hauptanwender von MEAs sind akademische Labors, in denen sich die Technologie als zuverlässiges Standardwerkzeug durchgesetzt hat. Mehr und mehr interessieren sich auch die Pharmaindustrie und Biotechnologieunternehmen verstärkt für die Technologie. Sie setzen sie ein, um ausgewählte Substanzen hinsichtlich ihrer Wirkung und Nebenwirkung auf Ionenkanäle und Rezeptorsysteme in neuronalen Systemen und im Herz-Kreislauf-System zu untersuchen und zum Auffinden und Testen neuer Substanzen zur Behandlung von neurologischen und psychiatrischen Erkrankungen.

Neue diagnostische und therapeutische Ansätze

"Mikro- und nanotechnische Innovationen sind eine wichtige Basis für neue Testmethoden für die Medikamentenentwicklung und für neue diagnostische und therapeutische Ansätze in der Medizintechnik. Wir entwickeln Mikrosysteme und Nanotechniken zur Manipulation und Analyse von Biomolekülen, Zellen und Geweben, wobei wir mikrotechnische Entwicklungen mit biotechnischen und zellbiologischen Methodenentwicklungen verbinden", erklärt Dr. Alfred Stett, Stellvertretender Institutsleiter, die Entwicklung von Sensorarrays, Lab-on-a-Chip Applikationen und Mikroimplantaten am NMI.

Eine besondere Bedeutung hat für das NMI die Elektrophysiologie, die in der Grundlagenforschung, Wirkstoffentwicklung und Neurotechnologie eine immer größere Rolle spielt. Die MEA-Technologie stellt hier ein besonders erfolgreiches Mikrosystem für Life Science Anwendungen dar. Sie war auch die technologische Basis für eine Lösung für das automatisierte Patch-Clamping, die zur Ausgründung der Firma Cytocentrics AG führte. Diese mittlerweile in Rostock angesiedelte Firma hat das Konzept umgesetzt und entwickelt einen Automaten, mit denen die Wirkungen bzw. Nebenwirkungen von Medikamenten elektrophysiologisch an Zelllinien getestet werden können. Eingang fanden die Mikrosystemtechniken aus der MEA-Entwicklung auch in die Entwicklung eines miniaturisierten Netzhaut-Implantates, die zur Gründung der Reutlinger Retina Implant AG führte. Mit dem Implantat kann blinden Menschen zumindest ein Teil ihres Sehvermögens wieder zurückgeben werden.

Die BIOPRO Baden-Württemberg GmbH hat als Mitveranstalter der Konferenz zum zweiten Mal einen Tagungsband herausgebracht, der die vielfältigen Aspekte der Technologie und ihrer Anwendungen wiederspiegelt.
Quelle: NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen - 13.08.08

Glossar

  • Biotechnologie ist die Lehre aller Verfahren, die lebende Zellen oder Enzyme zur Stoffumwandlung und Stoffproduktion nutzen.
  • Ein Gen ist ein Teil der Erbinformation, der für die Ausprägung eines Merkmals verantwortlich ist. Es handelt sich hierbei um einen Abschnitt auf der DNA, der die genetische Information zur Synthese eines Proteins oder einer funktionellen RNA (z. B. tRNA) enthält.
  • Mit dem Begriff Mutation wird jede Veränderung des Erbguts bezeichnet (z. B. Austausch einer Base; Umstellung einzelner DNA-Abschnitte, Einfügung zusätzlicher Basen, Verlust von Basen oder ganzen DNA-Abschnitten). Mutationen kommen ständig in der Natur vor (z. B. ausgelöst durch UV-Strahlen, natürliche Radioaktivität) und sind die Grundlage der Evolution.
  • Rezeptoren sind Moleküle, die u. a. auf Zelloberflächen anzutreffen sind und die in der Lage sind, ein genau definiertes Molekül – ihren Liganden – zu binden. Das Zusammentreffen von Ligand und Rezeptor kann eine Abfolge von Reaktionen innerhalb der Zelle auslösen.
  • Screening kommt aus dem Englischen und bedeutet Durchsiebung, Rasterung. Man versteht darunter ein systematisches Testverfahren, das eingesetzt wird, um innerhalb einer großen Anzahl von Proben oder Personen bestimmte Eigenschaften zu identifizieren. In der Molekularbiologie lässt sich so z.B. ein gewünschter Klon aus einer genomischen Bank herausfiltern.
  • Ein Mikroelektroden-Array (MEA) ist ein spezieller Chip, der eine Vielzahl von Elektroden enthält und dessen Oberfläsche chemisch so beschaffen ist, dass Nervenzellen an definierten Stellen dort anwachsen können. So ist es möglich, ein geordnetes Netzwerk von Nervenzellen zu erschaffen, das durch die Elektroden elektrisch stimuliert wird und so als Modell für Vorgänge im Gehirn verwendet werden kann.
  • Mit Nanotechnik ist Forschung und Technologieentwicklung auf der atomaren Ebene in einer Größenordnung von einem bis einhundert Nanometern gemeint. Sie hat zum Ziel, Strukturen, Geräte und Systeme zu schaffen und zu nutzen, die aufgrund ihrer geringen Größe neue Eigenschaften und Funktionen besitzen.
  • Neuron ist der Fachausdruck für Nervenzelle. Diese besteht aus einem Zellkörper, einem Axon und Dendriten.
  • Stammzellen sind Zellen, die die Fähigkeit zur unbegrenzten Zellteilung besitzen und die sich zu verschiedenen Zelltypen ausdifferenzieren können. Stammzellen können aus Embryonen, fötalem Gewebe und aus dem Gewebe Erwachsener gewonnen werden. In Deutschland ist die Gewinnung embryonaler Stammzellen verboten.
  • Tissue Engineering beruht darauf, lebende Zellen eines Organismus außerhalb eines Körpers zu kultivieren und ggf. mit extrazellulären Komponenten biologischer oder synthetischer Art zu kombinieren. Anschließend werden die bioartifizellen Regenerate oder Konstrukte wieder in den Organismus implantiert.
  • Eine Zelllinie ist eine dauerhaft etablierte Zellkultur, die sich unter definierten Bedingungen unbegrenzt vermehrt.
  • Unter Zelltherapie versteht man die Behandlung von Patienten mit lebenden Zellen, um kranke Zellen zu ersetzen oder durch neue, voll funktionsfähige Zellen zu unterstützen.
  • Die Zytologie oder auch Zellbiologie ist eine Disziplin der Biowissenschaften, in der mit Hilfe mikroskopischer und molekularbiologischer Methoden die Zelle erforscht wird, um biologische Vorgänge auf zellulärer Ebene zu verstehen und aufzuklären.
  • Die Neurowissenschaften sind ein Sammelbegriff für Disziplinen der Biologie, Psychologie und Medizin, die sich mit dem Aufbau und der Funktionsweise von Nervensystemen befassen und die Störungen und Krankheiten dieser Systeme untersuchen.
  • Die Neurologie ist ein Teilgebiet der Medizin und befasst sich mit den Erkrankungen des Nervensystems.
  • Die Pharmakologie ist eine Wissenschaft, die sich mit der Wechselwirkung zwischen Arzneimitteln und Organismen befasst. Dabei gibt es zwei Verfahren zur Beurteilung: Die Pharmakokinetik beschreibt die Aufnahme, Verteilung, Verstoffwechselung und Ausscheidung des Wirkstoffs, die Pharmakodynamik beschreibt die Wirkung des Arzneimittels im Organismus.
  • Physiologie ist die Lehre von den biochemischen und physikalischen Vorgängen in Zellen, Geweben und Organen der Lebewesen.
  • Plastizität ist die Eigenschaft von Organismen, ihre Merkmalsausprägungen unter Einfluss von Umweltfaktoren zu verändern. Unter neuronaler Plastizität versteht man die Eigenschaft von Nervenzellen, sich in Abhängigkeit von ihrer Aktivität in ihren Antworteigenschaften zu verändern. Meist wird dabei die Stärke der synaptischen Übertragung beeinflusst (synaptische Plastizität). Die neuronale bzw. synaptische Plastizität wird als grundlegender Mechanismus für Lernvorgänge und Bildung von Erinnerungen angesehen.
  • Die Alzheimer-Krankheit (auch Morbus Alzheimer genannt) ist eine langsam fortschreitende Demenz-Erkrankung, die sich in einer immer stärkeren Abnahme der Hirnfunktionen äußert. Sie tritt vor allem im Alter auf. Die Hauptursache von Alzheimer sind intrazelluläre Ablagerungen eines Fragments des Amyloid-Vorläufer-Proteins (APP), wodurch es zu einem zunehmenden Verlust von Nervenzellen und damit der Gehirnmasse kommt. Die Betroffenen zeigen anfangs nur eine geringfügigen Vergesslichkeit. In späteren Stadien sind vor allem die Sprache, das Denkvermögen und das Gedächtnis beeinträchtigt. Im Endstadium der Krankheit kommt es schließlich zu einem vollständigen Verlust des Verstandes sowie der Persönlichkeit der betroffenen Personen.
  • Epilepsien sind Funktionsstörungen des Gehirns, bei denen es zu spontanen, unkontrollierten Entladungen der Nervenzellen kommt. Kontrollieren diese Nervenzellen Muskelkontraktionen, kommt es zu Krämpfe und damit zu unkoordinierten, schnellen Bewegungen, die der Epilepsiekranke nicht steuern kann. Sind Nervenzellen betroffen, die für das Denken und Bewusstsein eine Rolle spielen, verliert ein Betroffener bei einem Anfall das Bewusstein.
  • Die Mikrosystemtechnik basiert auf technischen (Sub-)Systemen, deren funktionsbestimmende Strukturen Maße im Mikrometerbereich aufweisen (ein Mikrometer entspricht einem Tausendstel Millimeter).
  • Ein Mikroelektroden-Array (MEA) ist ein spezieller Chip, der eine Vielzahl von Elektroden enthält und dessen Oberfläsche chemisch so beschaffen ist, dass Nervenzellen an definierten Stellen dort anwachsen können. So ist es möglich, ein geordnetes Netzwerk von Nervenzellen zu erschaffen, das durch die Elektroden elektrisch stimuliert wird und so als Modell für Vorgänge im Gehirn verwendet werden kann.
Seiten-Adresse: https://www.gesundheitsindustrie-bw.de/de/fachbeitrag/aktuell/gesundheitsforschung-mit-mikrosystemen/